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Solving discontinuous 
problems with 
pseudospectral methods

JOANNA PIOTROWSKA, JONAH MILLER



Why investigate numerical methods?

… IF THERE ALREADY EXIST WIDELY APPLIED SCHEMES?
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PSEUDOSPECTRAL METHODS

Ø Projection onto a set of basis functions:

Exponential error decay 
for smooth solutions
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ADVANTAGES

Gibbs phenomenon in 
discontinuous solutions
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GIBBS PHENOMENON
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A system involving shocks can be solved with pseudospectral methods
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mollified reconstruction

Evolve the solution in time 
at the collocation points

Remove Gibbs oscillations 
in post-processing
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EDGE DETECTION MOLLIFICATION
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DYNAMICALLY EVOLVING DISCONTINUITIES
require

correct determination of 
mollification onset

robust
edge detection
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correct determination of mollification onset
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robust edge detection
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Toy example: 1D advection equation
𝜕@𝑢 + 𝑐𝜕D𝑢 = 0
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comparison with the Gegenbauer reconstruction

courtesy of 
J. M. Miller
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Advanced toy example: 1D inviscid Burgers’ equation:
𝜕@𝜙 + 𝜙𝜕D𝜙 = 0
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SUMMARY & OUTLOOK

Ø pseudospectral methods are a highly accurate means of solving 
continuous problems

Ø they suffer the Gibbs’ phenomenon in presence of discontinuities 

Ø the Gibbs phenomenon can be robustly removed
in post-processing via edge detection and mollification
(arXiv:1712.09952, Piotrowska et al. in prep.)

Ø taking advantage of the robustness of mollification, we are 
currently extending our working framework to 2D
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